
Illuminating the Unseen: Investigating the Context-induced Harms in
Behavioral Sensing

HAN ZHANG, University of Washington, USA
VEDANT DAS SWAIN, Northeastern University, USA
LEIJIE WANG, University of Washington, USA
NAN GAO, Tsinghua University, China
YILUN SHENG, University of Washington, USA
XUHAI XU,Massachusetts Institute of Technology, USA
FLORA D. SALIM, University of New South Wales, Austrilia
KOUSTUV SAHA, University of Illinois Urbana-Champaign, USA
ANIND K. DEY and JENNIFER MANKOFF, University of Washington, USA

Behavioral sensing technologies are rapidly evolving across a range of well-being applications. Despite its potential, concerns
about the responsible use of such technology are escalating. In response, recent research within the sensing technology
has started to address these issues. While promising, they primarily focus on broad demographic categories and overlook
more nuanced, context-specific identities. These approaches lack grounding within domain-specific harms that arise from
deploying sensing technology in diverse social, environmental, and technological settings. Additionally, existing frameworks
for evaluating harms are designed for a generic ML life cycle, and fail to adapt to the dynamic and longitudinal considerations
for behavioral sensing technology. To address these gaps, we introduce a framework specifically designed for evaluating
behavioral sensing technologies. This framework emphasizes a comprehensive understanding of context, particularly the
situated identities of users and the deployment settings of the sensing technology. It also highlights the necessity for iterative
harm mitigation and continuous maintenance to adapt to the evolving nature of technology and its use. We demonstrate the
feasibility and generalizability of our framework through post-hoc evaluations on two real-world behavioral sensing studies
conducted in different international contexts, involving varied population demographics and machine learning tasks. Our
evaluations provide empirical evidence of both situated identity-based harm and more domain-specific harms, and discuss the
trade-offs introduced by implementing bias mitigation techniques.
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1 INTRODUCTION
The rapid evolution of sensing technologies has unlocked new possibilities for tracking and understanding
human activities. Behavioral sensing technology, which involves using sensing to capture, model, and predict
human behaviors, offers a broad spectrum of applications. These include, but are not limited to, well-being
monitoring (e.g., mental health prediction [4, 34, 96, 109]), human activity recognition (e.g., identifying activities
like “running”, “sitting”, and “walking” [76, 99]), and personalized recommendations (e.g., personalized music and
taxi charging recommendation systems [80, 122]). This technology, in contrast to the traditional manual approach
of using questionnaire-collected data for the same tasks, facilitates continuous, automated, and unobtrusive
gathering of context [32, 36]. Here, context refers to capturing all information related to the interactions among
users, applications, and their environment [39, 40].

In recent years, concerns about the responsible use of behavioral sensing technology have been growing [27, 33,
72, 73]. These concerns arise from the prevalent top-down design approach, which typically involves technology
builders—a collective of researchers, designers, developers, and engineers—developing tools based on their
assumptions of users’ goals, needs, or preferences [73, 94]. This approach often leads to a lack of sufficient
understanding of the users’ diverse backgrounds and the situation in which the technology is used and deployed,
a concept described as context sensitivity [38, 39]. Consequently, important contextual factors that may not
initially appear relevant to its primary purpose are often disregarded during the early design phases. Such neglect
can lead to technologies that fail to adequately meet the diverse and real-world needs of users effectively and
may even introduce potential harms [135].

Understanding the differences in model performance and the potential harms of sensing technology is critical,
as also highlighted in prior research [5, 10, 91, 135, 136, 138]. Researchers have started exploring how models
may perform differently based on various personal sensitive attributes, a contextual factor we refer to as identity-
based harm. These attributes include demographics, socioeconomic status, country of residence, and health
conditions [5, 91, 136]. Accordingly, we recognize three gaps in the existing literature.
Gap 1: There is a limited understanding of more situated identities relevant to specific contexts, such as first-

generation college students, immigration status, or disability status—groups that also confront profound societal
inequalities [14, 127, 137]. The under-representation of these identities fails to capture a more comprehensive
spectrum of user experiences and needs within sensing technology design and application.
Gap 2: A distinct aspect of sensing technology lies in what we term as situation-based harm, which remains

understudied. This type of harm emerges specifically from the inherent versatility of sensing technology, which
finds applications across a diverse array of scenarios—from varied technological infrastructures and environmental
conditions to different device types [1, 134]. This diversity in application settings can lead to unique contextual
harms when the technology is designed or evaluated without thorough consideration of these situational
differences. Such harms are particularly concerning because they often do not intuitively link directly to users
and can go unanticipated, thereby increasing the risk of irresponsible technology deployment and exacerbating
the potential for ultimately negative impacts on users.
Gap 3: Understanding the intricacies of bias mitigation, particularly the potential trade-offs introduced by

adopting such techniques, remains underexplored. Moreover, the current evaluation frameworks do not adequately
cater to the unique demands of sensing technology pipelines. These pipelines require iterative bias mitigation and
continuous maintenance to adapt to the dynamic nature of sensing data, challenges that are not fully addressed
by existing frameworks (e.g., [67, 83, 117]). Moreover, there is a lack of a systematic approach to effectively design,
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build, and evaluate sensing technologies, leaving gaps in how these sensing technologies are developed and how
their impacts are assessed across different user groups and usage scenarios.
To address the identified gaps in existing research, we propose a theory-driven, human-centered framework

specifically designed for evaluating sensing technology. This framework builds upon evaluation frameworks
in machine learning [67, 83, 117] by incorporating a thorough assessment of both broad and domain-specific
context-induced harms to users during the evaluation process. Moreover, our proposed framework emphasizes
the need for iterative harm mitigation and continuous maintenance, critical components that are essential to
accommodate the dynamic nature of sensing technology.

We conduct post-hoc evaluations on two real-world behavioral sensing studies to demonstrate the feasibility of
our proposed framework and to derive new insights from the evaluation results. To ensure the generalizability of
our framework, we select two studies conducted in different countries, with different populations, and involving
distinct ML tasks. Specifically, one study focused on college student mental health detection [132], a classification
task; and another on teenage student learning engagement prediction [59], a regression task.

The first evaluation provides empirical evidence of situated identity-based harm, extending our understanding
beyond demographic categories such as race and age. The second evaluation, showcases robustness to identity-
based harm, but instead, highlights evidence for situation-based harm by showing significant performance
differences in algorithms across environmental situations, such as varying temperature conditions. Furthermore,
our experiment on a bias mitigation technique reveals a critical trade-off: efforts to mitigate harm for one attribute
inadvertently introduced harm to other attributes. In summary, our contributions are as follows.

• In Section 3, we propose a framework that integrates consideration for both identity-based and situation-
based harms, and emphasizes the need for iterative biasmitigation and continuousmaintenance to effectively
manage the dynamic challenges posed by sensing technologies.

• In Sections 4.1 and 4.2, We conduct evaluations on two real-world behavioral sensing studies. We provide
empirical evidence on the nuanced forms of identity-based harms and highlight situational dependencies
that affect algorithm performance. Furthermore, we make our analysis codebase openly accessible for
reproducibility1.

• In Section 5, we offer key insights from our evaluation studies, focusing on the potential harms linked to
more situated identity-based factors and the newly observed situation-based harms in behavioral sensing.
Additionally, we discuss the trade-offs introduced by implementing bias mitigation techniques.

We further offer reflections within and beyond our proposed framework. Our work aims to contribute both
conceptually and practically to the field, focusing on more responsible behavioral sensing technologies.

2 BACKGROUND AND RELATED WORK
As behavioral sensing technologies increasingly become a tool for tracking and reasoning about human activities,
they present a blend of promising opportunities and potential risks [138]. In this section, we first review behavioral
sensing technology, exploring its evolution and current landscape (Section 2.1). We then review a promising
application domain of these technologies, specifically in well-being prediction (Section 2.2). Following this, we
discuss the potential harms associated with these technologies, including both identity-based and situation-based
harms, particularly arising from a lack of context-sensitivity (Section 2.3). We conclude this section by reviewing
the human-centered design approach, aimed at addressing these harms (Section 2.4). This background forms the
basis for proposing our evaluation framework.

1We will release our codebase at publication.
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2.1 Evolution of Behavioral Sensing Technology
Since the late 1990s, researchers in sensing technology have increasingly recognized the importance of enabling
computing devices to enhance application performance by incorporating knowledge of the context in which
they are used [2, 39, 111]. “Context” in this sense refers to all information related to the interactions among
users, applications, and their environment [40]. Alongside this realization, there was growing advocacy for the
creation of sensing systems designed to offer information or services that are relevant to the specific tasks of
users, a concept known as context-awareness [2, 39]. Building upon this foundational concept, research efforts
have since concentrated on creating various toolkits and frameworks to capture, infer, and generate context
through diverse sensors [40, 50, 82, 110]. These initiatives have evolved to focus on employing these toolkits for
passive data collection, aiming to infer human behavior, such as their phone usage, location, sleep, and steps [42].
More recently, the integration of Machine Learning (ML) and Artificial Intelligence (AI) algorithms into these
technologies has further transformed this field. Researchers have begun integrating these advanced techniques
into sensing technologies, not only for modeling human behavior but also for making predictions [4, 11, 37].

2.2 Well-being Predition in Behavioral Sensing
Well-being prediction is one of the promising and extensively studied application domains for behavioral
sensing technologies. This domain includes various aspects such as predicting mental health [4, 25, 113] and
forecasting performance, engagement, as well as productivity [59, 124]. Specifically, in the area of mental health
prediction, considerable research has been dedicated to depression prediction. For instance, studies have utilized
passively sensed data such as physical activities, phone usage, sleep patterns, and step counts of participants to
predict depressive symptoms [25, 125, 129]. Additionally, there have been significant research efforts aimed at
understanding mood-related health concerns among students and workers, employing various types of passively
sensed data [79, 91, 96, 108].

In parallel, evaluating performance, engagement, and productivity as a facet of mental health-related well-being
prediction has also attracted considerable attention. Many studies have focused on student populations. For
example, Wang et al. conducted a study using passively collected data from smartphones and wearables of
college students to predict their cumulative GPA. In another work, Ahuja et al. developed a classroom sensing
system to capture student facial expressions and body gestures from audio and video data. Their approach
allowed for the analysis of students’ engagement levels based on these sensory inputs. In a different study, Gao
et al. [57, 59] employed indoor environmental data, such as temperature, humidity, CO2 levels, and sounds,
alongside physical activity data, to predict three dimensions of student engagement levels. Beyond the academic
setting, behavioral sensing technology is increasingly being used in the corporate sector to assess workplace
productivity and employee well-being [102]. For example, Mirjafar [93] trained machine learning algorithms on
sensing data to differentiate performance levels in workplaces, offering insights for workspace optimization and
stress management [37].

2.3 Potential Harms in Behavioral Sensing
While these behavioral sensing applications offer significant opportunities to improve and support human
well-being, they often employ a top-down design approach, which is predominantly driven by technology
builders’ assumptions of users’ goals, needs, or preferences [19, 94]. However, developing technologies based
solely on these assumptions, alongside what is easily possible to sense, without a thorough understanding of
the users’ diverse backgrounds and the situation in which the technology is used and deployed, can lead these
technologies to a lack of context sensitivity. In this paper, we expand context sensitivity, traditionally linked to
context-awareness [38, 39], and redefine it to highlight the responsible aspects of these technologies regarding
diverse user groups and situations.
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“A technology is context-sensitive when it accounts for diverse user backgrounds, needs, and
situations of use to provide value to users.”

As behavioral sensing technologies advance toward practical, real-world applications, it becomes increasingly
important to ensure that these technologies are context-sensitive. This consideration is crucial to mitigate
potential harms to users. Below, we review existing work on one type of harms, identity-based harm, in sensing
technology and introduce a domain-specific harm, situation-based harm.

2.3.1 Identity-based Harms. As highlighted by Yfantidou et al. in their review of sensing technology research from
2018 to 2022, a mere 5% of studies investigated algorithmic harms to users with sensitive attributes. Alarmingly,
90% of these studies limited their focus to only gender and age, and primarily relied on accuracy or error metrics
for evaluation. In recent years, Ubicomp researchers have begun to understand the potential harms of sensing
technology [5, 10, 91, 135, 136, 138]. For example, evaluations conducted on three existing datasets, based on
an established framework to identify and understand sources of identity-based harm throughout the ML life
cycle [116], have provided empirical evidence of identity-based harms across data generation, model building,
and implementation processes [136]. Adler et al. showed that sensed-behaviors that predict depression risk were
inconsistent across demographic and socioeconomic subgroups. In addition, researchers investigated into how
models perform across different countries or cultures—factors that are also tied to identity—have shed light on
variations in applications such as activity recognition [10] and mood inference [91]. While these developments
are promising, these works primarily focused on broad demographic categories and overlooks more nuanced,
context-specific identities. This oversight is concerning, because people with these attributes have a history of
facing societal inequalities, as extensively documented in psychology and social work research [26, 55, 71, 112]. For
example, Hangartner et al. found in their study of online recruitment platforms that individuals from immigrant
and minority ethnic groups received 4-19% fewer recruiter contacts. Similarly, Blaser et al. noted the significant
absence of disability reporting in tech companies and their media coverage. Moreover, Erete et al. employed
autoethnography [47] and testimonial authority [29] to share their experiences as Black women academics
during a pandemic disproportionately impacting their communities and in the context of civil unrest due to racial
injustice.

2.3.2 Situation-based Harm. Another potential harm that could emerge due to a lack of context sensitivity
in behavioral sensing technology is what we identify as situation-based harm. This type of harm could occur
when sensing technology is implemented in diverse situations or settings. As this aspect of potential harm is
relatively under-explored, we provide an example to help readers conceptually understand it. Specifically, if a
behavioral sensing algorithm is predominantly based on data from iOS-based smartphones, it may not be effective
on Android-based smartphones due to representational bias [92]. This may potentially lead to a disproportionate
impact on individuals of lower socioeconomic status or those in developing countries who commonly use more
affordable Android devices. Reportedly, iOS-based smartphones tend to be more than twice as expensive as their
Android-based counterparts [68, 97].

2.4 Human-Centered Approach for Investigating Harms
The broader ML community has developed various frameworks to evaluate bias [67, 83, 103, 117]. However, these
frameworks often fall short in prioritizing users’ needs. To identify and mitigate potential harms to humans,
there is an increasing call within the HCI, CSCW, and Ubicomp communities for a focus on human-centered AI
(HCAI) design [3, 9, 30, 46, 78, 118, 123]. While definitions of HCAI vary [23], the central theme revolves around
designing AI technologies that are deeply attuned to the needs, values, and agency of human users, partners,
and operators [23]. This approach focuses on ensuring that AI systems are technically efficient and align with
human-centric values and ethical standards. Research efforts have beenmade to provide guidelines for designers to
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create more ethical AI systems. For example, Amershi et al. distilled over 150 AI-related design recommendations
into 18 broadly applicable guidelines, including ensuring AI systems are cautious about social biases and enabling
users to provide feedback during regular interaction with the AI systems. Adopting this approach, researchers
have actively engaged with stakeholders to gain an in-depth understanding of their experiences and perceptions
regarding AI in general and sensing technology in particular. This engagement has focused on various aspects,
including stakeholders’ trust in AI systems [12, 75, 86, 119], their privacy concerns related to the use of sensing
technologies [6, 104, 106], and the specific impacts of these technologies in different settings [27, 33, 35, 36, 73].
Value-sensitive design is another widely adopted approach that can address potential harms to humans [52].

This approach is grounded in the principle of integrating human values into the design process thoroughly and
systematically. It utilizes a tripartite methodology that is both integrative and iterative, involving conceptual,
empirical, and technical investigations [53, 54]. To explicate this approach, Friedman et al. presented three
case studies in their work. Leveraging this concept, Zhu et al. applied value-sensitive design to algorithm
development. In their approach, they actively engaged with stakeholders during the early stages of algorithm
creation, incorporating their values, knowledge, and insights to ensure that the technology aligns with user needs
and ethical standards.

3 AN EVALUATION FRAMEWORK FOR INVESTIGATING CONTEXT-INDUCED HARMS IN
BEHAVIORAL SENSING

3.1 Our Evaluation Perspective: Human-Centered and Context-Sensitive AI
Our evaluation approach is grounded in the principles of human-centered AI (HCAI) [70, 114] and value-sensitive
design [54, 139], which advocates for a shift away from traditional practices where behavioral sensing technology
builders rely on predetermined assumptions about user needs and preferences [94]. Rather, it emphasizes a
thorough consideration of potential harms to users throughout the technology design process. This aims to
ensure that the behavior of the developed technologies does not reinforce negative stereotypes or biases against
users, in line with the guidelines proposed by Amershi et al. [9]. Moreover, we emphasize the importance of
iteratively mitigating potential harms to users and maintaining continuous oversight to address the dynamic
nature of sensing technology [138].

3.2 Overview of the Framework
In this section, we first present our developed framework for evaluating and mitigating the context-induced harms
in behavioral sensing. We then compare our framework with the prevailing evaluation approach in behavioral
sensing technology. Our framework, shown in Figure 1, has six steps.

• Step 1: Comprehensively understand the context. In this initial phase of developing behavioral sensing
technologies, a comprehensive understanding of the context is necessary. This involves the awareness of
users’ diverse backgrounds and engagingwith them to understand their specific needs, as well as considering
the variety of situated settings (such as technology infrastructure and environmental conditions).

• Step 2: Establish criteria for evaluating harms, and make sure the bias is not attributed to random
choice. After obtaining a detailed understanding of the context, technology builders should select metrics
that can effectively discern algorithmic variances in different contexts. To ensure that these differences
are not attributed to random chance, technology builders should employ a rigorous quantitative method,
predominantly a statistical analysis [135], for their assessment. The choice of these methods demands
careful deliberation to address issues such as Type I errors (false positives) and variations from different
groups.

• Step 3: Evaluate whether the collected data includes inclusive and comprehensive contextual in-
formation. This step involves evaluating whether the collected data adequately reflects the comprehensive
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Fig. 1. Overview of the Framework for Evaluating and Mitigating Context-induced Harms in Behavioral Sensing.
Steps 3, 4, and 5 cover the conventional evaluation flow for identifying harms.

context identified in Step 1. It is essential to ensure broad representation across a range of demographics
and to be acutely aware of situational factors during data collection.

• Step 4: Evaluate whether the technology uses context-sensitive algorithms. This step focuses on
assessing whether technology builders have engineered algorithms that are sensitive to potential harms
and biases that may emerge from varying contexts. It often requires a careful approach to data selection
for training and testing these algorithms. Moreover, technology builders should commit to a continuous
cycle of refinement and improvement of these algorithms, especially when harm or bias is detected.

• Step 5: Conduct harm evaluation on the behavioral sensing system, combining user feedback and
techniques tomitigate harms. This step involves assessing whether technology builders comprehensively
evaluate the behavioral sensing system to identify and address potential harms or biases. A crucial element
of this evaluation is the integration of user feedback, which offers valuable insights into the technology’s
performance in real-world scenarios and its effects on various user groups. If any biases are detected,
technology builders need to revisit Step 4. There, they must refine the algorithms by leveraging the insights
gained from user feedback, ensuring the technology not only performs optimally but also responsibly.

• Step 6: Continuous maintenance of data and algorithms for responsible deployment. This step of
evaluation is critical in the lifecycle of behavioral sensing technology. Once the technology is deployed,
technology builders should continuously monitor and update both the data and algorithms and evaluate
the model performance to ensure that the technology remains up-to-date and adapts to various contexts.
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Table 1. Overview of Evaluation Criteria and Methods for Each Evaluation Study. This table enumerates the various
elements assessed in each evaluation study and lists the specific methods employed for evaluating the algorithms.

Framework Outline Evaluation 1: Depression Detection Evaluation 2: Engagement Prediction

Step 1: Comprehensively understand
the context.

Identity-based harms: gender, sexual orientation, race,
immigration status, first-generation college student
status, and disability status. Situation-based bias:
device types and data collection time. Engagement
with users: understand their concerns and insights on
depression detection sensing technologies.

Identity-based harms: gender, disability status,
homeless youth, and religious minorities
Situation-based bias: Temperature condition, location,
and class group. Engagement with users: understand
their concerns and insights on student engagement
prediction sensing technologies.

Step 2: Establish criteria for
evaluating harms, and make sure the
bias is not attributed to random
choice.

Fairness metrics: disparities in accuracy, false negative
rate, and false positive rate. Significance test:
Mann-Whitney U test with Benjamini-Hochberg
correction.

Fairness metrics: disparities in mean squared error.
Significance test: Linear mixed model.

Step 3: Evaluate whether the
collected data includes inclusive and
comprehensive contextual
information.

Consider collecting data that could introduce identity-based harms and/or Situation-based bias
due to the contextual factors identified in Step 1.

Step 4: Evaluate whether the
technology uses context-sensitive
algorithms.

Ensure that the algorithms are aware of harms to users and can adapt to contextual changes.

Step 5: Conduct harm evaluation on
the behavioral sensing system,
combining user feedback and
techniques to mitigate harms.

Assess algorithms for potential harms or biases and verify their mitigation with user feedback.

Step 6: Continuous maintenance of
data and algorithms for responsible
deployment.

Implement strategies and actions to regularly update and maintain the data and algorithms.

4 EVALUATING EXISTING BEHAVIORAL SENSING TECHNOLOGIES – TWO EVALUATION
STUDIES

The objective of this section is two-fold. First, we aim to validate the feasibility of our proposed framework.
Second, we strive to provide empirical evidence on the nuanced forms of identity-based harms and situation-based
harms. To achieve these goals, we conduct post-hoc evaluations on two real-world behavioral well-being sensing
technology studies, each within a different domain and involving a distinct ML task. The first study focuses
on classifying students with depressive symptoms (Section 4.1). The second study aims to regress students’
engagement levels (Section 4.2).
For each evaluation, we start with a background section, delineating the real-world problem, the datasets

used, as well as the ML task and algorithms chosen for our evaluation. We then describe our evaluation process
(summarized in Table 1). This is followed by the evaluation results. Our evaluations mainly focus on two aspects.

• Evaluate the extent to which the steps proposed in our framework have been considered in previous efforts
in the design and implementation of well-being sensing technologies.

• Identify the potential harms and biases these technologies might introduce to users, by performing a
quantitative evaluation of those algorithms.

We provide detailed descriptions of the evaluation process for steps 1 and 2 within the respective sections
of each evaluation study, as these steps are customized to each specific case. Additionally, to gain a deeper
understanding of algorithmic harms, we conduct an experiment focusing on bias mitigation in each evaluation
study.
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4.1 Evaluation Study 1: Depression Detection
Research has been conducted using longitudinal passive sensing data from smartphones and wearable devices
to predict and detect depression (e.g., [120, 125, 130]). However, these studies often face challenges related
to the limited access to datasets and algorithms, hindering reproducibility and transparency in the field. To
address these issues, Xu et al. introduced GLOBEM [131], an open-sourced benchmark platform that includes
implementations of nine depression detection algorithms and ten domain generalization algorithms. All depression
detection algorithms focus on a common binary classification task: distinguishing whether users had at least
mild depressive symptoms. They also released a four-year longitudinal passive sensing behavioral dataset from
college students [132], aimed to highlight challenges in generalizing and reproducing longitudinal behavior
models. In our evaluation study, we examine these depression detection algorithms through a lens focused on
potential harms, employing the perspective provided by our proposed framework. Our goal is to assess whether
the designs of these algorithms, or their implementations, have considered the steps outlined in our framework.
If any of these steps were overlooked, what potential harms can we identify?
Datasets. We chose the four datasets from the GLOBEM study [132] for the evaluation of the depression

detection algorithms. To facilitate analysis and comparison, these datasets were labeled chronologically according
to the time of their collection (D1 to D4). These four datasets used in our evaluation consist of approximately 700
person-terms of data from around 500 unique participants who were enrolled in the same institution over 10
weeks during the Spring term between 2018 and 2021. These datasets include a wide range of passively sensed
behavioral data, including sleep patterns, phone usage statistics, physical activity levels, and phone call records.
The datasets also include a wide range of demographics, such as gender, race, first-generation status, immigration
status, sexual orientation, and disability status. This data was continuously collected 24 hours per day from
smartphones and Fitbits. Additionally, they also include self-reported depression data. We opted to use Beck
Depression Inventory-II (BDI-II) scores [13], which were collected once per person at the end of each term in
each dataset, as the ground truth.
Depression Detection Algorithms. We chose eight depression detection algorithms implemented by Xu

et al. [131]. These algorithms consist of a combination of support vector machine [22, 49, 120], logistic regres-
sion [107, 125], random forest [120], Adaboost [129], multi-task learning [84], and collaborative-filtering-based
model [130]. We excluded one algorithm in the implementation work developed by Chikersal et al. [25] from our
evaluation study due to a significant disparity between our reproduced results and the reported results in the
implementation work [131] (shown in Table 2).

4.1.1 Evaluation Methods and Results. In this subsection, we elaborate on the decision-making processes involved
in each step of our framework, followed by presenting our evaluation results.

Step 1: Comprehensively understand the context. In the development of behavioral sensing technologies
for depression detection, having a nuanced understanding of user diversity is crucial, as certain sub-populations
exhibit higher depression rates. Studies indicate an increased prevalence of depression in specific demographics,
such as women [8], first-generation college students [69], immigrants [56], non-heterosexual individuals [140],
racial minorities [18], and disability status [137]. These findings underscore the importance for depression
detection technology builders to be aware of this context – users’ sensitive attributes – to avoid societal biases
and ensure equitable outcomes. Additionally, temporal factors and the type of devices used during data collection
are crucial elements to consider. Research has indicated that depressive symptoms can fluctuate based on the time
of day (e.g., morning vs. evening) [24, 100] and that user behaviors might be affected by the specific settings of
their devices [28]. Recognizing these contexts – timing and device types during data collection – is crucial. Such
considerations enable technology builders to accurately model and predict depressive symptoms under different
conditions, thereby ensuring the technology’s adaptability and fairness in diverse data collection scenarios.
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Table 2. Reproduction Results. Balanced accuracy of the nine depression prediction algorithms on four datasets: DS1
and DS2, which were used in prior work [131], and DS3 and DS4, which are newly reported in this study. The comparison
of algorithm performance on DS1 and DS2 ensures the reliability of our fairness evaluation. The Δ column represents the
difference between our reproduced results and the previously reported results.

Algorithms DS1 (2018) DS2 (2019) DS3 (2020) DS4 (2021)
Prior results Our results Diff (Δ) Prior results Our results Diff (Δ) Our results Our results

Wahle et al. [120] 0.526 0.538 0.012 0.527 0.518 -0.009 0.514 0.514
Saeb et al. [107] 0.539 0.539 0.000 0.508 0.513 0.005 0.588 0.500
Farhan et al. [49] 0.552 0.552 0.000 0.609 0.609 0.000 0.563 0.609
Canzian et al. [22] 0.559 0.538 -0.021 0.516 0.516 0.000 0.541 0.502
Wang et al. [125] 0.566 0.565 -0.001 0.500 0.500 0.000 0.577 0.516
Lu et al. [84] 0.574 0.574 0.000 0.558 0.558 0.000 0.611 0.553
Xu et al.- Interpretable [129] 0.722 0.688 -0.034 0.623 0.667 0.044 0.833 0.733
Xu et al.- Personalized [130] 0.723 0.753 0.030 0.699 0.690 -0.009 0.791 0.686
Chikersal et al. (removed) [25] 0.728 0.618 -0.110 0.776 0.670 -0.106 0.581 0.641

Furthermore, engaging users early in the technology development process and incorporating their values and
feedback is vital for increasing user acceptance and engagement [54, 139]. This value-sensitive and human-
centered approach ensures that the technology is not only technically sound but also resonates with the users’
needs and preferences [9, 94].

Building upon the above analysis, our evaluation focuses on assessing whether the designs of these depression
detection algorithms take into account three critical aspects: the potential for identity-based harm, situation-based
harm, and the extent of technology builders’ engagement with users to understand their concerns about mental
health sensing technologies (summarized in Table 1).

Step 2: Establish criteria for evaluating harms, and make sure the bias is not attributed to random
choice. In this step, we evaluate whether prior work established criteria for evaluating potential harms. To
facilitate us to thoroughly examine the potential harms introduced by these depression detection algorithms,
we set two key evaluation criteria: classification fairness metrics and thresholds for quantifying differences and
biases. In the following subsections, we elaborate on the decision-making process that guided our choices of these
criteria. Additionally, we detail the experimental implementation in Appendix A.2, for the sake of transparency
and to facilitate reproducibility.

Criterion 1: Classification FairnessMetrics.Weused three fairnessmetrics: disparity in accuracy, disparity in
false negative rate, and disparity in false positive rate. These metrics were applied to assess algorithm performance
across individuals with sensitive attributes and those without sensitive attributes. We intentionally chose not
to adopt commonly used fairness metrics such as demographic parity (e.g., [21]), which aim to ensure equal
treatment across different groups. This decision was based on prior research findings indicating that individuals
with sensitive attributes are more likely to experience depressive symptoms (e.g., [61, 85, 90]). Using demographic
parity, which aims for equal rates of predicted depressive symptoms across groups, could conflict with empirical
evidence suggesting inherent disparities in depression prevalence. Our dataset analysis confirmed this, showing
notably higher depression levels in certain sensitive groups (first-generation college students, immigrants, and
non-male students) from 2018 and 20212 (see Figure 4 in Appendix). This highlights the critical need for selecting
fairness metrics that reflect real-world disparities.

2We performed a Mann-Whitney U test with the Benjamini-Hochberg correction for significance testing (more details are in Section
4.1.1).
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Criterion 2: Threshold for Quantifying Differences and Biases. We further added a criterion: a threshold
quantifying differences in algorithmic performances across various groups. We implemented this to mitigate
the impact of random variations. For this purpose, we chose established statistical tests, specifically opting for
a non-parametric approach, considering the non-normal distribution of the chosen datasets. We utilized the
Mann-Whitney U test, a widely recognized method for comparing means between two independent samples,
irrespective of their distribution [87, 128]. We further employed the Benjamini-Hochberg (B-H) correction method
to manage the Type I error rate associated with multiple comparisons within the same dataset [15]. We set a
stringent False Discovery Rate (FDR) threshold at 0.05 [16, 62], ensuring that the rate of false positives is carefully
controlled at 5%.

Steps 3 to 6: Collect inclusive datasets including comprehensive contextual information; develop
context-sensitive algorithms; evaluate the behavioral sensing, combining user feedback and techniques
to mitigate harms; and continuous maintenance of data and algorithms for responsible deployment. In
evaluating steps 3 to 6, we assessed how the existing depression detection sensing technology builders handled
several crucial aspects. First, we looked at whether they took into account the potential for identity-based and
situation-based harms during data collection, in line with the contextual factors highlighted in Step 1. Second, we
examined the design of the algorithms to determine if they were conscious of potential harms or biases and if
they could adapt to contextual changes. Third, we evaluated how these technologies mitigated harms identified
in their algorithms, particularly focusing on the use of user feedback. Finally, we assessed whether there were
effective strategies and actions in place for the regular updating and maintenance of the data and algorithms.

Below, we present our evaluation findings of current depression detection algorithm designs, focusing on how
well they align with our proposed framework. We then present the potential harms identified in these algorithms,
based on the context identified in Step 1 and the criteria established in Step 2. This is followed by the experiment
of bias mitigation and its results.

Table 3. Evaluation Results for Two Behavioral Sensing Technology Applications. This table summarizes the as-
sessment of eight depression detection algorithms (third to tenth rows) based on their original publications, and a re-
implementation study (eleventh row). The final line evaluates a student engagement prediction model. Symbols indicate
consideration levels: ✓ for full consideration, ⋇ for partial consideration, and ✗ for no consideration.

Algorithm
Design / Implementation

Comprehensively
Understand Context

Establish Harm
Evaluation Criteria

Collect Inclusive
Contextual Datasets

Design Context-
Sensitive Algorithms

Harm Evaluation
and Mitigation

Continuous
Maintenance

Evaluation Study 1: Depression Detection
Wahle et al. ⋇ ✗ ✓ ✗ ✗ ✗

Saeb et al. ⋇ ✗ ✗ ✗ ✗ ✗

Farhan et al. ⋇ ✗ ✓ ✗ ✗ ✗

Canzian et al. ⋇ ✗ ✗ ✗ ✗ ✗

Wang et al. ⋇ ✗ ✓ ✗ ✗ ✗

Lu et al. ⋇ ✗ ✓ ✗ ✗ ✗

Xu et al.- Interpretable ⋇ ✗ ✗ ✗ ✗ ✗

Xu et al.- Personalized ⋇ ✗ ✓ ✗ ✗ ✗

Xu et al.- Implementation ⋇ ✗ ✓ ✗ ✗ ✗

Evaluation Study 2: Engagement Prediction
Gao et al.- En-gage ⋇ ✗ ✓ ✗ ✗ ✗

Evaluation Results. In our review of nine papers related to the design and implementation of eight depression
detection algorithms, we observed that none of the prior work discussed potential harms to users, neither of
them engaged with users to better understand their needs. All prior work considered identity-based context,
i.e., sensitive attributes. However, consistent with previous sensing technology research, most studies only
focused on two sensitive attributes: age [49, 84, 120] and gender [49, 84, 125, 130, 131]. A few also considered
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race [49, 84, 125, 131], but other sensitive attributes were largely overlooked. In terms of situated aspects, while
most studies accounted for data collection time, consideration of device types was less common. Importantly,
while these studies reported on this context information, many did not disclose the proportion of data pertaining
to each, potentially leading to representative issues. More critically, none of the studies established criteria for
evaluating potential harms, nor was there evidence of context-sensitive algorithm design or processes for harm
evaluation and mitigation, particularly incorporating user feedback during the whole design process. Furthermore,
there was a lack of strategies for the regular maintenance and updating of data and algorithms. These findings
are summarized in Table 3, providing an overview of our evaluation results.
To assess the possibility of potential harms arising from a lack of context sensitivity in these depression

detection algorithms, we carried out a quantitative analysis. Specifically, we leveraged the evaluation criteria
defined in Step 2 (in Section 4.1.1) and evaluated the eight depression detection algorithms on the five sensitive
attributes identified in Step 1 (gender, first-generation college student status, immigration status, race, and sexual
orientation). Note that, disability status was removed due to the small sample size. The results, detailed in Table
4, revealed several insights.

Firstly, we observed biases in all algorithms towards certain sensitive attributes, i.e., their disparities in accuracy,
false negative rates, and false positive rates (highlighted in red in Table 3). Notably, algorithms with higher
balanced accuracy [129, 133] tended to show fewer biases across these attributes when evaluated with the three
fairness metrics. In particular, the algorithm Xu_interpretable [129] did not exhibit bias in terms of accuracy
and false positive rate disparities.

Another interesting finding was the reduced bias in all algorithms on DS3, the dataset collected at the start of
the COVID-19 outbreak in 2020. This suggests that the significant impact of COVID-19 might have overshadowed
other sensitive attributes, leading to this pattern of decreased bias. Additionally, we did not see a consistent pattern
indicating which algorithms consistently demonstrated fair performance regarding the sensitive attributes.

Additional Experiment on Bias Mitigation. Recognizing the presence of biases in the eight algorithms,
we took steps to mitigate these algorithmic biases. Our approach involved an in-processing technique, where
sensitive attributes were incorporated into both the training and testing phases [121, 135]. This method allows
algorithms to understand and learn from the relationships between sensitive attributes and the target variable
(i.e., BDI-II scores). Previous research indicates that such an approach can help diminish discriminatory patterns
present in the data, thereby enhancing the fairness of the models across diverse groups. [121, 135]. Our goal in
this experiment was not to develop specific fair algorithms or mitigation techniques but rather to demonstrate a
method for reducing bias and obtaining new insights.

As an example, we selected Xu_interpretable algorithm [129] due to its relatively high detection performance
in depression detection (shown in Table 2) and its relatively low level of disparities across three fairness metrics
in the four datasets and five sensitive attributes. We focused on mitigating bias related to first-generation college
student status, a sensitive attribute where this algorithm showed bias in terms of disparity of false negative
rate. We integrated this attribute into both the training and testing phases of the algorithm and re-evaluated the
algorithm’s performance.

Our evaluation result, as detailed in Table 5, demonstrates the effectiveness of including the status of being a
first-generation college student in the training and testing phases to reduce algorithmic harms. This method
led to a fair treatment of this particular sensitive attribute across all datasets, evaluated using three different
fairness metrics. However, it is worth noting that while this approach improved fairness for first-generation
college student status, it seemed to adversely impact fairness concerning other sensitive attributes such as sexual
orientation and gender. A more comprehensive discussion of such trade-offs is described in Section 5.
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Table 4. Algorithmic Harm Evaluation Results. Results of algorithmic harms through the disparity in accuracy, the
disparity in false negative rate, and the disparity in false positive rate (without incorporating demographic data into the
training and testing process). The results are adjusted p-values by Benjamini-Hochberg correction after the Mann-Whitney
U test. Significance is highlighted in red. Acc, Fnr, and Fpr are the abbreviations of the disparity in accuracy, the disparity in
false negative rate, and the disparity in false positive rate.

Algorithms Sensitive Attributes DS1 (2018) DS2 (2019) DS3 (2020) DS4 (2021)
Acc Fnr Fpr Acc Fnr Fpr Acc Fnr Fpr Acc Fnr Fpr

Wahle et al. [120]

First-gen College Student 0.020 0.030 0.030 0.010 0.050 0.010 0.020 0.030 0.040 0.010 0.050 0.020
Gender 0.030 0.030 0.030 0.020 0.030 0.030 0.050 0.010 0.020 0.050 0.030 0.050
Immigration Status 0.040 0.030 0.030 0.040 0.040 0.050 0.010 0.020 0.040 0.040 0.010 0.030
Race 0.010 0.030 0.030 0.030 0.010 0.020 0.030 0.050 0.030 0.020 0.020 0.010
Sexual Orientation 0.050 0.030 0.030 0.050 0.020 0.040 0.040 0.040 0.010 0.030 0.040 0.040

Saeb et al. [107]

First-gen College Student 0.010 0.030 0.010 0.020 0.030 0.030 0.010 0.050 0.050 0.020 0.030 0.050
Gender 0.050 0.040 0.050 0.030 0.030 0.030 0.020 0.030 0.020 0.040 0.040 0.030
Immigration Status 0.020 0.010 0.040 0.010 0.030 0.030 0.040 0.040 0.030 0.050 0.050 0.020
Race 0.030 0.050 0.020 0.040 0.030 0.030 0.050 0.010 0.010 0.030 0.020 0.010
Sexual Orientation 0.040 0.020 0.030 0.050 0.030 0.030 0.030 0.020 0.040 0.010 0.010 0.040

Farhan et al. [49]

First-gen College Student 0.030 0.020 0.040 0.020 0.030 0.040 0.030 0.040 0.040 0.030 0.010 0.010
Gender 0.020 0.030 0.030 0.010 0.020 0.010 0.040 0.030 0.050 0.010 0.040 0.030
Immigration Status 0.040 0.040 0.020 0.040 0.010 0.030 0.050 0.010 0.030 0.050 0.050 0.050
Race 0.050 0.050 0.010 0.050 0.050 0.050 0.010 0.020 0.010 0.040 0.020 0.040
Sexual Orientation 0.010 0.010 0.050 0.030 0.040 0.020 0.020 0.050 0.020 0.020 0.030 0.020

Canzian et al. [22]

First-gen College Student 0.020 0.030 0.030 0.020 0.010 0.020 0.020 0.020 0.030 0.010 0.030 0.020
Gender 0.030 0.030 0.030 0.010 0.020 0.010 0.020 0.030 0.020 0.030 0.020 0.030
Immigration Status 0.040 0.030 0.030 0.030 0.050 0.050 0.050 0.040 0.040 0.050 0.040 0.050
Race 0.010 0.010 0.030 0.050 0.030 0.040 0.010 0.020 0.010 0.040 0.030 0.040
Sexual Orientation 0.050 0.030 0.030 0.040 0.030 0.040 0.040 0.050 0.050 0.020 0.050 0.010

Wang et al. [125]

First-gen College Student 0.020 0.050 0.040 0.020 0.030 0.030 0.040 0.030 0.050 0.020 0.040 0.030
Gender 0.040 0.040 0.030 0.030 0.030 0.030 0.050 0.040 0.020 0.040 0.020 0.040
Immigration Status 0.010 0.020 0.010 0.010 0.030 0.030 0.010 0.010 0.030 0.050 0.010 0.050
Race 0.030 0.010 0.020 0.040 0.030 0.030 0.020 0.020 0.040 0.030 0.030 0.020
Sexual Orientation 0.050 0.030 0.050 0.050 0.030 0.030 0.030 0.050 0.010 0.010 0.050 0.010

Lu et al. [84]

First-gen College Student 0.010 0.020 0.030 0.010 0.010 0.050 0.040 0.040 0.040 0.050 0.040 0.030
Gender 0.050 0.030 0.020 0.040 0.020 0.020 0.030 0.040 0.050 0.020 0.030 0.020
Immigration Status 0.040 0.050 0.040 0.050 0.030 0.040 0.050 0.010 0.020 0.010 0.050 0.010
Race 0.020 0.010 0.010 0.030 0.040 0.030 0.010 0.020 0.030 0.040 0.010 0.050
Sexual Orientation 0.030 0.040 0.030 0.020 0.050 0.050 0.020 0.030 0.050 0.030 0.020 0.020

Xu_interpretable et al. [129]

First-gen College Student 0.040 0.020 0.050 0.010 0.030 0.010 0.010 0.010 0.020 0.030 0.010 0.030
Gender 0.020 0.040 0.040 0.020 0.010 0.020 0.040 0.030 0.040 0.010 0.050 0.010
Immigration Status 0.030 0.010 0.020 0.050 0.050 0.030 0.030 0.020 0.030 0.050 0.030 0.040
Race 0.010 0.030 0.010 0.030 0.020 0.040 0.020 0.040 0.010 0.040 0.020 0.050
Sexual Orientation 0.050 0.050 0.030 0.040 0.040 0.050 0.050 0.050 0.050 0.020 0.040 0.020

Xu_personalized et al. [130]

First-gen College Student 0.030 0.040 0.020 0.030 0.030 0.040 0.030 0.040 0.020 0.020 0.020 0.010
Gender 0.010 0.050 0.040 0.040 0.050 0.030 0.050 0.010 0.010 0.050 0.030 0.020
Immigration Status 0.050 0.020 0.050 0.020 0.040 0.020 0.010 0.030 0.020 0.040 0.050 0.030
Race 0.020 0.010 0.030 0.010 0.020 0.010 0.020 0.020 0.050 0.030 0.040 0.040
Sexual Orientation 0.040 0.030 0.010 0.050 0.010 0.050 0.040 0.050 0.040 0.010 0.010 0.050

4.2 Evaluation Study 2: Student Engagement Prediction
4.2.1 Background. In recent years, addressing the growing concerns of poor academic performance and student
disinterest has led to a heightened interest in understanding student engagement, emotions, and daily behavior.
This shift has coincided with significant advances in sensing technology, paving the way for novel methods to
unobtrusively monitor and analyze student behavior and mental well-being in educational settings. A significant
milestone in this domain is the introduction of the En-Gage dataset by Gao et al. [57]. This dataset, available at
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Table 5. Results After Implementing Bias Mitigation Techniques. Example of algorithmic fairness evaluation results of
Xu_Interpretable [129] through the three fairness metrics (with incorporating first-generation college student status into
the training and testing process). The first row in each sub-table showcases the result of our evaluation pertaining to the
first-generation college student status, subsequent to the incorporation of this sensitive attribute into both the training and
testing phases. In the context of q-values obtained before and after the inclusion of first-generation college student status, ♠
represents the former, while ■ represents the latter. Acc, Fnr, and Fpr are the abbreviations of the disparity in accuracy, the
disparity in false negative rate, and the disparity in false positive rate.

Fairness Metric Sensitive Attribute DS1 (2018) DS2 (2019) DS3 (2020) DS4 (2021)
q value ♠ q value ■ q value ♠ q value ■ q value ♠ q value ■ q value ♠ q value ■

Disparity in Acc

First-gen College Student 0.040 0.030 0.010 0.020 0.010 0.040 0.030 0.030
Gender 0.020 0.010 0.020 0.010 0.040 0.020 0.010 *0.010
Immigration Status 0.030 0.050 0.050 0.050 0.030 0.030 0.050 0.040
Race 0.010 0.040 0.030 0.040 0.020 0.010 0.040 0.020
Sexual Orientation 0.050 0.020 0.040 0.030 0.050 0.050 0.020 0.050

Disparity in Fnr

First-gen College Student 0.020 0.040 0.030 0.020 *0.010 0.030 0.010 0.020
Gender 0.040 0.010 0.010 0.030 0.030 0.050 0.050 0.050
Immigration Status 0.010 0.030 0.050 0.050 0.020 0.040 0.030 0.040
Race 0.030 0.020 0.020 0.040 0.040 0.020 0.020 0.030
Sexual Orientation 0.050 0.050 0.040 0.010 0.050 0.010 0.040 0.010

Disparity in Fpr

First-gen College Student 0.050 0.030 0.010 0.020 0.020 0.040 0.030 0.030
Gender 0.040 0.010 0.020 0.010 0.040 0.020 0.010 *0.010
Immigration Status 0.020 0.020 0.030 0.040 0.030 0.050 0.040 0.050
Race 0.010 0.050 0.040 0.030 0.010 0.010 0.050 0.020
Sexual Orientation 0.030 0.035 0.040 0.038 0.050 0.027 0.030 0.040

PhysioNet 3, is distinguished as the largest and most diverse dataset in environmental and affect sensing within
the educational field, offering unparalleled insights into student engagement patterns and classroom dynamics
through a diverse array of sensing technologies.

Dataset. The En-Gage dataset includes a four-week cross-sectional study involving 23 Year-10 students (15–17
years old, 13 female and 10 male) and 6 teachers (33–62 years old, four female and twomale) in a mixed-gender K12
private school. It utilizes wearable sensors to collect physiological data and daily surveys to gather information
on the participants’ thermal comfort (the comfort level of students regarding the perceived temperature at the
time), learning engagement, seating locations, and emotions during school hours. An initial online survey was
conducted to obtain participants’ background information, including age, gender, general thermal comfort, and
class groups. The dataset reflects the students’ organization into different groups (Form group, Math group,
and Language group), aiding in tracking their classroom locations. To clarify, students are typically enrolled in
courses based on their form group division, except for math courses which are determined by their math group
division, and language courses which are determined by their language group division.
Throughout the study, the participants were asked to wear Empatica E4 wristbands [89] during school time,

which capture 3-axis accelerometer readings, electrodermal activity, photoplethysmography (PPG), and skin
temperature. They were also asked to complete online surveys three times a day, posted after certain classes.
These surveys capture detailed insights into participants’ behavioral, emotional, and cognitive engagement, as
well as their emotions, thermal comfort and seating locations [58]. In total, the dataset comprises 291 survey
responses and 1415.56 hours of physiological data from all participants.

Engagement Prediction Models. We chose the engagement regression model, LightGBM Regressors [98], devel-
oped by Gao et al. [59]. The regression model is designed to predict student engagement across three dimensions:
emotional, cognitive, and behavioral engagement. Emotional engagement evaluates their feelings of belonging

3The dataset download link: https://physionet.org/content/in-gauge-and-en-gage/1.0.0/
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and emotional reaction to the educational environment, cognitive engagement assesses their effort to understand
complex ideas and skills, and behavioral engagement looks at students’ participation in academic and extracurric-
ular activities. The 1 to 5 Likert scale was used for scoring engagement levels, where 1 represents low and 5 high
engagement. To predict these multidimensional scores, a variety of features were extracted, including data from
wearable devices and weather stations. It is worth noting that, data such as gender, thermal comfort, and class
groups, were not used for the engagement prediction.

4.2.2 Evaluation Methods and Results. In this subsection, following the approach used in Subsection 4.1.1, we first
explain the decision-making process for each step of our framework, followed by the results of our evaluation.

Step 1: Comprehensively understand the context. Previous research has highlighted that marginalized
groups, including women of color, students with disabilities, homeless youth, and religious minority students,
often face feelings of alienation and isolation, which can significantly affect their learning engagement [101, 115].
Studies have also pointed out that variables like the perceived temperature and the timing of data collection can
impact student engagement [60, 95]. Moreover, the role of social learning spaces, derived from engaging with
student participants, has been recognized as a factor contributing to enhanced engagement [88].
Given these insights, our evaluation of student engagement prediction technology focused on whether its

design took these contextual factors into account and aligned with the values and experiences of users. An
overview of contextual factors we evaluated can be found in Table 1.

Step 2: Establish criteria for evaluating harms, and make sure the bias is not attributed to random
choice. Given the regression-based prediction task, we used the disparity in Mean Squared Error (MSE) as our
primary fairness metric to identify biases in model performance. MSE, the average of squared discrepancies
between predicted and actual values, is widely recognized for assessing regression model accuracy [126]. Addi-
tionally, to discern if biases were systematic or due to random variation, and considering repeated measurements
from individuals, we adopted a linear mixed model method [77]. This approach involved calculating residuals
(differences between actual values and predictions) across various engagement prediction tasks. Subsequently,
we utilized a linear mixed model, executed in Python, to examine whether these residuals significantly varied
among different groups (e.g., gender and thermal comfort). This statistical method is beneficial for its ability to
account for both within-group and between-group variations in the data, thereby offering a deeper insight into
the biases present in model performance.

Steps 3 to 6. Our approach to decision-making and evaluation for Steps 3 to 6 in this evaluation study mirrors
the method we employed in the first evaluation study, detailed in Section 4.1.1. A comprehensive overview of the
criteria and methods used in these steps can also be found in Table 1.
Evaluation Results. In line with the results from our first evaluation study, our examination of relevant

papers in this study [57, 59] indicates that researchers did not engage with the users to understand their needs or
considered potential harms to users, and only very limited contextual factors were considered. These factors
included gender, thermal comfort at the time of data collection, and information about the courses and classrooms
that participants were involved in prior to data collection. Additionally, a key observation is that while this
contextual data was considered during the data collection phase, it was not actively incorporated into the training
and testing phases of their algorithms. Moreover, the researchers did not address the potential harms of their
algorithms. They did not establish criteria for evaluating such harms or implement techniques, including student
feedback, to mitigate potential biases. Additionally, there was no evidence of strategies for regular maintenance
and updates of the data and algorithms.

We carried out a quantitative analysis to assess the potential negative impacts derived from neglecting certain
contextual factors. The findings, detailed in Table 6, indicate that specific situated contexts – such as thermal
comfort, the group division (e.g., language and math groups), and the courses students were engaged in prior to
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Table 6. Results of Linear Mixed Models Analysis. This table displays the results from linear mixed models, focusing
on identifying the significance of differences in regression models across diverse contexts within different engagement
prediction tasks. Levels of significance are denoted as follows: * for 𝑝 < 0.05, ** for 𝑝 < 0.01, and *** for 𝑝 < 0.001. For each
contextual factor, one group is designated as the reference (or baseline) category, for example, the Female group in Gender.
The “Interpret” represents the average effect for the reference group when all other predictors are held at their reference
level (for categorical variables).

Contextual Factors Model Variables Emotional Engagement Cognitive Engagement Behavioral Engagement
Coef. Std. Error P>|z| Coef. Std. Error P>|z| Coef. Std. Error P>|z|

Gender
Intercept 0.006 0.119 0.962 -0.055 0.121 0.651 -0.033 0.105 0.753
groups [T.Male] -0.025 0.179 0.891 0.080 0.182 0.659 -0.038 0.157 0.810
Group Var 0.121 0.072 0.120 0.070 0.076 0.044

Thermal Comfort

Intercept -0.140 0.116 0.225 -0.113 0.118 0.338 -0.136 0.113 0.232
groups [T.No change] 0.286 0.112 *0.011 0.181 0.119 0.130 0.215 0.117 0.067
groups [T.Warmer] -0.117 0.150 0.436 -0.013 0.160 0.937 -0.190 0.156 0.225
Group Var 0.112 0.067 0.098 0.054 0.081 0.052

Language Group

Intercept 0.001 0.094 0.991 0.101 0.114 0.377 0.021 0.102 0.836
groups [T.Room 41] 0.721 0.244 **0.003 -0.492 0.299 0.100 0.327 0.264 0.215
groups [T.Room 43] -0.094 0.184 0.611 -0.213 0.219 0.331 -0.248 0.198 0.210
groups [T.Room 68] -0.351 0.198 0.076 -0.181 0.241 0.452 -0.324 0.214 0.129
Group Var 0.057 0.045 0.097 0.070 0.068 0.052

Math Group
Intercept 0.194 0.166 0.242 -0.314 0.155 *0.043 0.125 0.153 0.414
groups [T.Room 41] -0.292 0.215 0.175 0.330 0.201 0.101 -0.335 0.198 0.091
groups [T.Room 43] -0.251 0.223 0.261 0.500 0.209 0.017 -0.131 0.205 0.524
Group Var 0.111 0.070 0.086 0.05 0.082 0.055

Course

Intercept -0.285 0.237 0.228 -0.376 0.241 0.119 -0.022 0.237 0.926
groups [T.English] 0.488 0.241 *0.043 0.396 0.246 0.107 0.290 0.246 0.239
groups [T.Health] 0.400 0.353 0.257 0.395 0.360 0.273 -0.086 0.360 0.811
groups [T.Language] 0.075 0.255 0.769 -0.148 0.260 0.569 -0.400 0.260 0.124
groups [T.Maths] 0.274 0.240 0.253 0.530 0.245 *0.030 0.035 0.245 0.885
groups [T.PE] 0.485 0.356 0.173 0.558 0.363 0.125 0.226 0.363 0.532
groups [T.Politics] 0.174 0.251 0.489 0.212 0.256 0.407 -0.343 0.257 0.182
groups [T.Science] 0.240 0.262 0.360 0.634 0.267 *0.018 -0.085 0.267 0.749
Group Var 0.128 0.085 0.126 0.073 0.084 0.054

data collection – significantly influence the performance of the prediction algorithm. For example, as illustrated
in Table 6, the algorithm’s ability to accurately assess emotional engagement was statistically different between
students who were comfortable with the room temperature and those who were not (feeling either too cold or
too warm). To delve deeper into this observation, we analyzed the mean squared error (MSE) of the regression
algorithm across different levels of thermal comfort. As reported in Table 7, the algorithm showed a notably lower
error rate (𝑀𝑆𝐸 = 0.631, 𝑝 = 0.011) when predicting the emotional engagement of students who were comfortable
with the temperature, compared to those who were not (𝑀𝑆𝐸 = 0.822 for students feeling the temperature should
be cooler and 𝑀𝑆𝐸 = 0.742 for students feeling the temperature should be warmer). Similarly, our analysis
indicated a significantly higher error rate (𝑀𝑆𝐸 = 0.849, 𝑝 = 0.043) in predicting the cognitive engagement of
students in Room 40 for their math class, as opposed to those in other math groups (𝑀𝑆𝐸 = 0.715 for Room 41
and𝑀𝑆𝐸 = 0.753 for Room 43). Interestingly, our analysis revealed no evidence of algorithmic bias or harm, both
with gender and in predicting student behavioral engagement.
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Table 7. Overview of Basic Statistics. MSE refers to the Mean Squared Error, indicating the average of the squares of the
errors. ’Residual’ denotes the difference between the ground truth and prediction. MR represents the Mean Residual, which
is the average of residuals within each group. “Ind” and “Obs” stand for individuals and observations, respectively.

Context Factors Groups Counts
(Ind/Obs)

Emotional
Engagement

Cognitive
Engagement

Behavioral
Engagement

MSE MR MSE MR MSE MR

Gender Female 13/149 0.708 -0.014 0.711 -0.005 0.800 -0.023
Male 10/142 0.693 0.033 0.822 -0.004 0.674 0.002

Thermal Comfort
No Change 22/163 0.631 0.158 0.774 0.069 0.687 0.129
Cooler 20/77 0.822 -0.140 0.755 -0.135 0.730 -0.115
Warmer 14/51 0.742 -0.242 0.751 -0.045 0.915 -0.300

Language Group

Room 40 13/155 0.618 0.008 0.690 0.156 0.681 0.051
Room 41 2/53 0.886 0.703 1.019 -0.563 0.799 0.427
Room 43 5/52 0.526 -0.075 0.779 -0.082 0.592 -0.186
Room 68 3/53 1.007 -0.312 0.823 -0.072 1.016 -0.276

Math Group
Room 40 7/80 0.671 0.247 0.849 -0.327 0.640 0.178
Room 41 9/110 0.763 -0.114 0.715 0.044 0.783 -0.185
Room 43 7/101 0.657 -0.046 0.753 0.197 0.768 0.030

Course

Chapel 11/12 0.938 -0.268 1.100 -0.297 0.693 0.021
English 18/71 0.599 0.255 0.484 0.057 0.639 0.340
Health 8/8 0.991 0.155 1.538 0.149 0.776 -0.035
Language 20/38 0.986 -0.206 0.970 -0.512 0.975 -0.372
Maths 20/79 0.551 -0.033 0.816 0.150 0.779 0.0177
PE 8/8 1.044 0.235 1.314 0.103 0.845 0.224
Politics 19/43 0.754 -0.119 0.784 -0.101 0.643 -0.341
Science 19/32 0.641 0.006 0.537 0.252 0.687 -0.050

Table 8. Results After Implementing Bias Mitigation Techniques. The outcomes following the inclusion of language
group assignment data in the training and testing phases of the emotional engagement prediction algorithm.

Contextual Factors Model Variables Emotional Engagement
Coef. Std. Error P>|z|

Gender
Intercept -0.026 0.096 0.785
groups [T.Male] 0.030 0.143 0.834
Group Var 0.060 0.045

Thermal Comfort

Intercept -0.154 0.103 0.137
groups [T.No change] 0.288 0.110 **0.009
groups [T.Warmer] -0.094 0.147 0.523
Group Var 0.055 0.042

Language Group

Intercept 0.022 0.093 0.811
groups [T.Room 41] 0.236 0.240 0.325
groups [T.Room 43] -0.060 0.181 0.740
groups [T.Room 68] -0.282 0.195 0.147
Group Var 0.053 0.043

Contextual Factors Model Variables Emotional Engagement
Coef. Std. Error P>|z|

Math Room
Intercept 0.164 0.131 0.210
groups [T.Room 41] -0.299 0.169 0.077
groups [T.Room 43] -0.172 0.175 0.327
Group Var 0.050 0.042

Course

Intercept -0.345 0.228 0.131
groups [T.English] 0.579 0.240 *0.016
groups [T.Health] 0.554 0.351 0.115
groups [T.Language] 0.111 0.254 0.663
groups [T.Maths] 0.304 0.239 0.203
groups [T.PE] 0.490 0.354 0.166
groups [T.Politics] 0.202 0.251 0.420
groups [T.Science] 0.320 0.261 0.219
Group Var 0.051 0.040

Additional Experiment on Bias Mitigation. To determine if the findings from our first evaluation study can
be replicated using the same bias mitigation technique – incorporate context data into both the training and
testing phase of the algorithm – we conducted an additional experiment in this evaluation study.
As an example, we aimed to mitigate the algorithmic bias caused by the lack of detailed information about

students’ assignments to different language groups, specifically in the context of predicting student emotional
engagement. As indicated in Table 8, incorporating this information into both the training and testing phases of
the algorithm proved effective in reducing algorithmic harm. Compared to Table 3, this method resulted in a
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more equitable prediction performance across students assigned to various language groups. However, it was less
effective in addressing biases related to different levels of thermal comfort and the variety of courses students
were taking.

5 DISCUSSION
In this section, we begin by summarizing the key insights we derived from our evaluation studies (Section 5.1).
This summary covers the various findings, their implications, and how they contribute to our understanding of
designing behavioral sensing technologies. Following this, we delve into a reflection on our framework, examining
its strengths, limitations, and considering perspectives that extend beyond its current scope (Section 5.2).

5.1 Key Insights on Evaluation Studies
Our evaluations of two real-world behavioral well-being sensing technology studies demonstrated the practicality
and effectiveness of our proposed framework. Throughout both evaluation studies, we identified a range of
commonalities as well as unique findings, which we detail below.

5.1.1 Potential Harms to Marginalized Groups Due to Context-insensitivity. In both of our evaluation studies,
we uncovered a critical and consistent issue with existing behavioral sensing technology designs: a widespread
disregard for potential harms to users. Our evaluation, as detailed in Table 3, revealed that none of the designs
thoroughly considered steps 2, 4, 5, and 6 proposed in our framework during their design processes. Furthermore,
while a few designs did consider the collection of more diverse contextual datasets (e.g., [129, 130]), this type of
data was not utilized effectively during the algorithm training and testing phases. Our quantitative analysis of
algorithm performance substantiates the concern of potential harms due to this oversight. Both studies identified
significant issues, either identity-based harm or situation-based harm. Identity-based harm, which is more
straightforward, can directly impact marginalized groups. In contrast, the concept of situation-based harm is
more nuanced and can be subtle in its impact on these groups. To illustrate this further, in addition to the example
discussed in Section 2.3.2, our second evaluation study provides another insightful instance. Specifically, we found
that the algorithm for predicting emotional engagement was less effective for students who felt uncomfortably
cold or warm compared to those who were comfortable with the temperature (as detailed in Tables 6 and 7).
This finding may imply a potential indirect harm to individuals of lower socioeconomic status, who may have
restricted access to air conditioning and thus are more likely to experience algorithmic harms [64].

5.1.2 Balance Trade-offs in Achieving Algorithmic Fairness. In our first evaluation study, as detailed in Section 4.1.1,
we encountered a trade-off when attempting to mitigate harms. We observed that while using an in-processing
mechanism (i.e., incorporating the sensitive attribute into the training and testing process) helped reduce bias
for that particular attribute, it unexpectedly introduced a bias towards other sensitive attributes. This outcome
highlights the complex and nuanced nature of mitigating algorithmic harms. It suggests that while certain
mitigation strategies might address specific biases, they can also unintentionally create new harms.

Understanding these intricate trade-offs, technology builders should explicitly ask the questionwhen developing
context-sensitive algorithms: which group of users should be prioritized and to what extent? Our framework
emphasized the importance of comprehensively understanding users’ backgrounds and specific needs to answer
the first part of this question. Our emphasis on engaging more with users and involving them throughout the
design of the behavioral sensing technologies answers the latter part of this question.

The complex field of algorithmic fairness often presents trade-offs not only between different user groups but
also among various fairness metrics [66]. Each metric provides a unique lens on bias, focusing on different aspects
of equity. However, optimizing for one metric may lead to unintended negative outcomes in another, creating
challenging scenarios [31]. For example, in our first evaluation study, when sensitive attributes were incorporated
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into Saeb et al.’s algorithm training and testing, it reduced bias in accuracy disparity for most sensitive attributes,
as shown in Table 9. Yet, a detailed examination of other key fairness metrics like disparity in false negative rates
and positive rates (Tables 10 and 11) reveals significant variations. This highlights the complex dynamics involved
in fairness optimization, where achieving fairness in one dimension might inadvertently lead to imbalances in
others, emphasizing the multifaceted nature of achieving algorithmic fairness. This dynamic becomes even more
crucial in behavioral sensing technologies, where data collection remains continuous, and system behavior is
deeply adaptive to changing contexts. This recognition sets the stage for our subsequent discussion (Section 5.2),
delving into the essential requirement for regular and systematic monitoring.

5.1.3 A Need for Engage Users Throughout the Design Process. Another key finding from both of our evaluation
studies is the complete absence of user involvement throughout the design process of existing behavioral sensing
technologies. Given the widespread use of behavioral sensing technologies, particularly in the mental health
domain, this is concerning. As argued by Zhu et al. [139], engaging with users in the early stage of the design
process can ensure that technologies are designed with a deep understanding of users’ needs and values, which
can significantly enhance user acceptance and satisfaction. Furthermore, the engagement of users extends beyond
the initial design phase to include ongoing feedback loops. Regular interactions with users allow for iterative
improvements and adjustments based on evolving needs, emerging challenges, and changing social contexts [9].
However, it is important to recognize the balance between involving users to mitigate technology harms and
minimizing demands on their time and resources. This is especially necessary for people with different needs [137].
Striking this balance ensures that users’ contributions are meaningful and sustainable, and that their valuable
input genuinely shapes the direction of the technology while respecting their availability and capacity.

5.2 Towards More Responsible Behavioral Sensing
In this section, we discuss various aspects both within and beyond our current framework. These include the
necessity of continuous maintenance for longitudinal behavioral sensing deployment while minimizing human
labor, considerations of harms in other components of behavioral sensing technology, as well as the incorporation
of other responsible considerations. Our intention is to inspire researchers and designers towards the conception
and realization of more responsible behavioral sensing technologies.

5.2.1 Need for Regular Maintenance while Alleviating Excessive Human Labor. During our evaluation studies, we
discovered that the reason behind the lack of continuous maintenance for responsible deployment (as outlined in
step 6 of our framework) in these behavioral sensing technology designs was that the technologies were not truly
deployed in real-world settings. This limitation arises from the nature of the limited datasets and the absence of
deployable algorithmic systems [131, 138].
Behavioral sensing technologies in real-world applications operate in dynamic environments and depend on

continuously evolving data streams. This dynamic nature increases the risk of situation-based harms, demanding
continuous vigilance to guarantee that the system’s accuracy and fair alignment persist over time. Regular
maintenance is a key step in achieving this goal. By continuously updating deployment datasets, refining
algorithms to accommodate temporal dynamics, and regularly monitoring the system’s performance, the system
can uphold its reliability and fulfill its ethical responsibility towards users and users. However, it is also important
to avoid overburdening human resources with excessive maintenance demands. High human labor requirements
can lead to operational inefficiencies, increased costs, and hindered scalability [51]. Striking a balance between
rigorous maintenance and an approach that minimizes the burden on human resources is pivotal. Leveraging
automation, intelligent monitoring, and adaptive algorithms can potentially alleviate this issue.
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5.2.2 Other Aspects of Harms in Behavioral Sensing Technology. In this work, our emphasis centers on addressing
harms within the algorithmic aspects of behavioral sensing technology. Nonetheless, it is important to acknowl-
edge that considerations of harms should extend beyond the algorithm design process and include other critical
components of the system. One dimension, for example, to focus on is the user interface and user interaction.

A user interface that is designed without incorporating the consideration of harms to users can inadvertently
influence users to make certain choices or take specific actions. When these nudges disproportionately benefit
particular groups, it can result in disparate outcomes that perpetuate inequality. Additionally, if user interfaces
are not designed with accessibility in mind, individuals with disabilities might face barriers in accessing the
interacting with the system. Future endeavors should take this aspect into account when designing their user
interface. Finally, approaches to transparently informing users about potential fairness concerns, similar to
transparent information about accuracy concerns, should be incorporated into a deployed fair behavioral sensing
technology.

5.2.3 Expanding Responsible Considerations to Address Additional Needs. While our study primarily concentrates
on algorithmic harms in the context of behavioral sensing technology, it is essential to recognize that responsible
considerations encompass a broader spectrum of dimensions, such as transparency, privacy, and accountability
(e.g., [45, 81]). As behavioral sensing technology becomes more widely used, ensuring transparency becomes a
pressing concern. A lack of transparency can lead to opacity and a lack of user trust [12, 20]. Interpretability and
explanation techniques are crucial in addressing this issue, allowing users to understand algorithmic decisions
and aiding system developers in identifying potential harms [43]. Furthermore, continuous data collection in
behavioral sensing raises significant privacy challenges [104]. The risk of unauthorized and unintended data
sharing is ever-present. Researchers can develop privacy-preserving algorithms and techniques tailored specifically
to behavioral sensing environments and delve into privacy-enhancing technologies, such as secure multi-party
computation [63, 74], federated learning [105], and differential privacy [44], and incorporate them into the
framework. In addition, accountability is about establishing mechanisms to hold responsible parties accountable
for the outcomes of their algorithms and systems [41]. In behavioral sensing, accountability can be challenging
due to complex decision-making processes and interactions between various components. Technology builders
of these technologies must be held answerable for their impact on users. Expanding our proposed framework to
include all the above-discussed aspects can create a more comprehensive foundation for responsible behavioral
sensing technology design and deployment.

6 LIMITATIONS AND FUTURE WORK
While our research included two comprehensive evaluations of real-world behavioral sensing technologies
across various domains and machine ML tasks, aiming to derive broader conclusions, we acknowledge that both
evaluation studies are situated within the overarching theme of well-being prediction. This specific focus may
limit the generalizability of our findings to other applications outside of well-being prediction. Furthermore,
in both of our evaluation studies, we identified various instances of identity-based and situation-based harms.
However, we note that some aspects might still be overlooked. Moreover, the datasets used in our evaluations
presented their own set of constraints. For instance, specific instances of harms, such as disability status, were
either unrepresented or underrepresented due to limited data collection or small sample sizes. This data limitation
restricts our ability to make conclusive statements about these groups. Future work should continue to explore
the potential harms in a broader array of behavioral sensing technology applications, identify additional instances
both within the two potential harms we discussed and beyond, as well as collect more inclusive datasets for a more
comprehensive analysis. Additionally, while our study demonstrates the feasibility of our proposed framework for
evaluating and mitigating harms, its practical usability and broader application still require validation. Comparing
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our framework with others, although beyond the scope of this study, will be crucial in future meta-evaluations to
benchmark its effectiveness and utility in the field.

7 CONCLUSION
In conclusion, this paper identified three gaps in the existing literature. We introduce a specific framework
for evaluating and mitigating the context-induced harms in behavioral sensing. Our framework highlights a
comprehensive consideration of potential broad and domain-specific harms due to a lack of context sensitivity
and the need for iterative harm mitigation and continuous maintenance for responsible technology deployment.
Through our two evaluation studies, we showcase the feasibility of our proposed framework. By conducting
quantitative analyses, we uncover empirical evidence of identity-based and situation-based harms in existing
behavioral sensing technologies and validate the framework’s capability in identifying and mitigating these
harms. We discuss the insights learned from the evaluation studies and other aspects within and beyond the scope
of our proposed framework. We hope our work inspires technology builders in our field to amplify their attention
to the significance of incorporating harm considerations and other responsible considerations in behavioral
sensing technologies.
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A APPENDIX

A.1 Percentage of Each Group within Each Sensitive Attribute

Fig. 2. Percentage of each group within each sensitive attribute. The protected group for each sensitive attribute (e.g.,
first-gen) is shaded in dark colors, while the unprotected group is shaded in light colors (e.g., non-first-gen). Non-male
includes women, transgender individuals, and genderqueer individuals, non-heterosexual includes homosexual, bisexual, and
asexual individuals, and non-white includes black, asian, latinx, and biracial.

A.2 Case Study 1: Example of the Statistical Evaluation and Experimental Implementation

Fig. 3. Example of fairness evaluation based on the disparities in accuracy, false negative rate, and false positive rate. (a)
shows the synthetic data for 20 individuals, with 6 belonging to the protected group (represented by “x” marks) and 14
belonging to the unprotected group (represented by “·” marks). (b) visualizes the distribution and disparities of predictions
for both groups, where correction predictions are depicted in green and incorrect predictions in red.

(a) Synthetic data for 20 individuals.

A depressed 
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(b) Visualization of prediction distributions and disparities.

A.2.1 Example of the Statistical Evaluation. In Figure 3, we present an illustrative example to demonstrate our
approach to fairness evaluation. In this example, we generated synthesized ground-truth labels and predictions
from an algorithm for a sample of 20 individuals. Among these individuals, 6 are part of the protected group, while
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14 belong to the unprotected group (as shown in Figure 3a). We assigned a value of “1” for accurate predictions
and “0” for inaccurate predictions based on the correctness of the predictions.
Figure 3b visualizes the distribution of predictions for both the protected group (represented by “x”) and the

unprotected group (represented by “·”). The circle in the figure represents the distribution of predictions, with
the left side indicating cases where all ground truth values are positive (representing individuals with depression
in our case study), and the right side representing cases where all ground truth values are negative (representing
individuals without depression in our case study). The accuracy of the predictions is indicated by the color, with
green representing correct predictions by the algorithm and red representing incorrect predictions.
In this example, when considering the disparity in accuracy, the algorithm made incorrect predictions for 4

out of 6 individuals from the protected group (represented by the red “x” marks among all both red and green “x”
marks). Conversely, for the unprotected group, the algorithmmade incorrect predictions for 3 out of 14 individuals
(depicted by the red “·” marks among all red and green “·” marks). To assess the statistical significance of these
disparities, we conducted the Mann-Whitney U test in combination with the Benjamini-Hochberg correction.
Specifically, we applied this test to the 2 “1” values and 4 “0” values corresponding to the protected group, as well
as the 11 “1” values and 3 “0” values corresponding to the unprotected group.
When examining the difference in false negative rates, the relevant information for statistical analysis is

contained in the left portion of the circle depicted in Figure 3b. Specifically, we conducted a statistical test on the
1 “1” value and 3 “0” values in the protected group, as well as the 4 “1” values and 1 “0” value in the unprotected
group. Similarly, an evaluation of the disparity in false positive rates was conducted on the marks on the right
side of the circle in Figure 3b.

A.2.2 Experimental Implementation. We applied the two evaluation criteria as defined in Section 4.1.1 to evaluate
the fairness of the eight depression detection algorithms. We provide a detailed explanation of our statistical
analyses to capture disparities in accuracy, false negative rate, and false positive rate below (an example of this
approach can be found in above). We provide open access to our evaluation codebase to enable reference and
reproducibility for future research.
To perform the Benjamini-Hochberg correction, we first calculated the 𝑝 values for all attributes using the

Mann-Whitney U test. Then, we arranged the 𝑝 values in ascending order and assign ranks to them, with the
smallest 𝑝 value receiving rank 1, the second smallest receiving rank 2, and so on. Next, we calculated the adjusted
𝑞 values for each individual 𝑝 value using the formula: (𝑖/𝑚) ×𝑄 , where 𝑖 is the rank of the individual 𝑝 value,𝑚
is the total number of tests, and 𝑄 is the false discovery rate, 0.05. Finally, we compared the original 𝑝 values to
the calculated 𝑞 values. Attributes with a 𝑝 value smaller than the corresponding 𝑞 value and less than 0.05 were
considered to have significant differences (which we highlighted in red in Tables 4 and 5).

To examine potential disparities across various groups of one algorithm, we employed a systematic approach.
Initially, we categorized algorithm predictions based on their correctness, assigning a value of “1” to instances
where the algorithm accurately predicted the ground truth and a value of “0” to instances where the algorithm
falsely predicted the ground truth. Subsequently, we applied the Mann-Whitney test in conjunction with the
Benjamini-Hochberg correction to different subsets of the “0” and “1” values to evaluate the following three
hypotheses. First, we conducted a thorough analysis to determine whether the algorithms exhibited comparable
accuracy in predicting the ground truth for both the protected and unprotected groups, aiming to evaluate
potential disparities in accuracy. To achieve this, we performed the Mann-Whitney test with the Benjamini-
Hochberg correction on the complete set of “0” and “1” values. Second, our assessment focused on whether the
algorithms demonstrated similar false negative rates in predicting the ground truth for both the protected and
unprotected groups, to identify potential disparities in false negative rates. To accomplish this, we conducted
the same test on the subset of “0” and “1” values where the ground truth labels were positive. Similarly, we
proceeded to investigate whether the algorithms displayed comparable false positive rates for both the protected
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and unprotected groups. This was achieved by applying the same test on the subset of “0” and “1” values where
the ground truth labels were negative.
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A.3 Comparisons of Depression Scores for Different Groups of Four Datasets.

Fig. 4. Comparisons of depression (BDI-II) scores for different groups of four datasets. The red dotted line indicates the cutoff
point (i.e., 13) for BDI-II scores, which is used to distinguish between students with at least mild depressive symptoms (BDI-II
score >=13) and those without (BDI-II < 13). Significance levels after Benjamini-Hochberg (B-H) correction are marked with
an asterisk (*𝑝 < 0.05) in red on the subplot. First-gen, BA, and HET represent first-generation college students, bachelor,
and heterosexual, respectively.
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Table 9. Summary of bias changes with the addition of sensitive attributes in the training and testing process in terms of
disparity in accuracy. This table provides an overview of bias alterations resulting from the inclusion of sensitive attributes
during the training and testing processes, using disparity in accuracy as the fairness metrics. It encompasses bias amplification
and reduction for each sensitive attribute across the four datasets. The comparison highlights the consequences of adding or
excluding sensitive attributes in training and testing. Extra bias is denoted in red, while reduced bias is highlighted in green.
For instance, considering the Xu_interpretable algorithm, Tables 4 and 5 present fairness evaluation outcomes before and
after incorporating data related to first-generation college student status. When this sensitive attribute is introduced, an
additional bias towards gender emerges in DS4, indicated by the label “1” in this table.

Sensitive Attributes
Algorithm Added Attributes First-gen

college student Gender Immigration
Status Race Sexual

Orientation
First-gen college student 1 -1 0 0 0
Gender 1 1 0 0 0
Immigration Status 1 -1 0 0 0
Race 0 -1 0 0 0

Wahle et al.

Sexual Orientation 1 0 0 0 0
First-gen college student -1 -1 -1 -1 -1
Gender -2 1 -1 -1 -1
Immigration Status 0 0 -1 -1 0
Race 0 0 0 0 0

Saeb et al.

Sexual Orientation -1 0 0 -1 -1
First-gen college student 0 0 0 0 0
Gender 0 1 0 0 0
Immigration Status 0 0 1 0 1
Race 0 -1 0 1 1

Farhan et al.

Sexual Orientation 0 1 0 0 0
First-gen college student 1 0 0 0 -1
Gender 0 0 0 0 0
Immigration Status -1 -1 0 0 0
Race 0 0 0 0 0

Canzian et al.

Sexual Orientation 0 -1 2 0 0
First-gen college student 1 0 -1 1 -1
Gender 0 1 0 1 0
Immigration Status 0 0 -1 1 0
Race 0 1 -1 0 0

Wang et al.

Sexual Orientation 1 1 -1 0 0
First-gen college student 0 1 0 2 1
Gender -1 0 0 1 0
Immigration Status 0 0 0 1 0
Race 0 0 0 1 0

Lu et al.

Sexual Orientation -1 0 0 0 1
First-gen college student 0 1 0 0 0
Gender 0 0 0 0 0
Immigration Status 0 1 0 0 0
Race 0 1 0 0 0

Xu_interpretable et al.

Sexual Orientation 0 1 0 0 0
First-gen college student 0 0 0 0 0
Gender 0 0 0 0 0
Immigration Status 0 0 0 0 0
Race 0 0 0 0 0

Xu_personalized et al.

Sexual Orientation 0 0 0 0 0
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Table 10. Summary of bias changes with the addition of sensitive attributes in the training and testing process in terms
of disparity in false negative rates. This table provides an overview of bias alterations resulting from the inclusion of
sensitive attributes during the training and testing processes, using disparity in false negative rates as the fairness metrics. It
encompasses bias amplification and reduction for each sensitive attribute across the four datasets. The comparison highlights
the consequences of adding or excluding sensitive attributes in training and testing. Extra bias is denoted in red, while
reduced bias is highlighted in green.

Sensitive Attribute
Algorithm Added Attribute First-gen

college student Gender Immigration
Status Race Sexual

Orientation
First-gen college student 2 0 0 1 0
Gender 0 0 0 0 0
Immigration Status 0 0 1 1 0
Race 0 0 0 0 0

Wahle et al.

Sexual Orientation 0 0 0 0 1
First-gen college student 3 2 0 2 -2
Gender 1 2 0 1 -1
Immigration Status 0 1 0 0 -1
Race 0 0 0 2 -1

Saeb et al.

Sexual Orientation 0 0 0 0 0
First-gen college student 1 0 -1 0 1
Gender 0 0 -1 0 0
Immigration Status 0 1 2 0 1
Race 0 0 -1 0 0

Farhan et al.

Sexual Orientation 0 0 0 0 1
First-gen college student 2 1 0 0 0
Gender 0 0 0 0 0
Immigration Status 0 0 3 1 1
Race 1 0 0 1 0

Canzian et al.

Sexual Orientation 0 0 0 0 1
First-gen college student 1 0 0 1 0
Gender 0 0 0 0 0
Immigration Status 0 0 0 0 0
Race 0 0 0 1 0

Wang et al.

Sexual Orientation 0 0 0 0 0
First-gen college student 1 1 0 1 0
Gender 0 2 0 0 0
Immigration Status -1 1 1 0 0
Race -1 0 0 3 0

Lu et al.

Sexual Orientation -1 0 0 0 0
First-gen college student -1 0 0 0 0
Gender 0 1 0 0 0
Immigration Status -1 0 0 0 0
Race -1 0 0 0 0

Xu_interpretable et al.

Sexual Orientation -1 0 0 0 0
First-gen college student 0 0 0 0 0
Gender 0 0 0 0 0
Immigration Status 0 0 0 0 0
Race 0 0 0 0 0

Xu_personalized et al.

Sexual Orientation 0 0 0 0 0
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Table 11. Summary of bias changes with the addition of sensitive attributes in the training and testing process in terms
of disparity in false positive rates. This table provides an overview of bias alterations resulting from the inclusion of
sensitive attributes during the training and testing processes, using disparity in false positive rates as the fairness metrics. It
encompasses bias amplification and reduction for each sensitive attribute across the four datasets. The comparison highlights
the consequences of adding or excluding sensitive attributes in training and testing. Extra bias is denoted in red, while
reduced bias is highlighted in green.

Sensitive Attribute
Algorithm Added Attribute First-gen

college student Gender Immigration
Status Race Sexual

Orientation
First-gen college student 3 0 1 1 0
Gender -1 1 0 0 0
Immigration Status 0 0 1 0 0
Race 1 0 0 2 0

Wahle et al.

Sexual Orientation 0 0 0 1 1
First-gen college student 4 -1 0 1 0
Gender 1 2 1 2 1
Immigration Status 1 1 2 3 1
Race 1 0 1 1 0

Saeb et al.

Sexual Orientation 0 -1 0 0 1
First-gen college student 1 1 0 1 0
Gender 0 2 0 1 -1
Immigration Status 0 0 1 -1 -1
Race 0 0 0 -1 -1

Farhan et al.

Sexual Orientation 0 1 0 -1 -1
First-gen college student 1 -1 1 0 -1
Gender 0 0 0 0 0
Immigration Status -1 -1 3 1 -1
Race 0 0 0 -1 0

Canzian et al.

Sexual Orientation -1 -1 1 0 0
First-gen college student 2 0 0 0 -1
Gender 0 0 0 0 -1
Immigration Status 0 0 1 0 0
Race 1 1 0 1 -1

Wang et al.

Sexual Orientation 0 0 0 0 -1
First-gen college student 3 1 -1 1 1
Gender 0 3 -1 0 -1
Immigration Status 1 0 1 1 -1
Race 2 0 0 2 -1

Lu et al.

Sexual Orientation 0 0 0 0 0
First-gen college student 0 1 0 0 0
Gender 0 0 0 0 0
Immigration Status 1 1 0 0
Race 1 1 0 0 0

Xu_interpretable et al.

Sexual Orientation 1 1 0 0 0
First-gen college student 0 0 0 -1 0
Gender 0 0 0 -1 0
Immigration Status 0 0 0 -1 0
Race 0 0 0 -1 0

Xu_personalized et al.

Sexual Orientation 0 0 0 -1 0
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